Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(4-Chlorophenyl)-3-(2,4,5-trimethoxy-phenyl)prop-2-en-1-one

Jeannie Bee-Jan Teh, ${ }^{\text {a }}$ P. S. Patil, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {a * }}$ Ibrahim Abdul Razak ${ }^{\text {a }}$ and S. M. Dharmaprakash ${ }^{\text {b }}$
${ }^{\text {a X }}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Studies in Physics, Mangalore University,
Mangalagangotri, Mangalore 574 199, India
Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.054$
$w R$ factor $=0.178$
Data-to-parameter ratio $=34.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}$, the dihedral angle between the benzene rings is $65.9(1)^{\circ}$. The crystal packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Chalcones are important biological compounds that exhibit antibacterial, antifungal, antitumor and anti-inflammatory properties. They are also intermediates in the biosynthesis of flavonoids that are found widely in plants and have an array of biological activities. Furthermore, many chalcone derivatives exhibit excellent non-linear optical (NLO) properties (Fichou et al., 1988; Uchida et al., 1998; Patil et al., 2006a,b). We have synthesized a new chalcone derivative, (I) (Fig. 1), which crystallizes in a centrosymmetric space group and therefore does not exhibit second-order non-linear optical properties.

(I)

Bond distances and angles in (I) have normal values (Allen et al., 1987), comparable with related structures (Teh et al., $2006 a, b$; Patil et al., 2006a,b). The least-squares plane through the enone group (C7, C8, C9 and O4) makes dihedral angles of 19.1 (2) and $59.8(1)^{\circ}$ with the C1-C6 and C10-C15 benzene rings, respectively. The dihedral angle between the benzene rings is $65.9(1)^{\circ}$. The methoxy group attached at C 1 is slightly twisted away from the C1-C6 benzene ring plane, with a $\mathrm{C} 16-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angle of 16.0 (3) ${ }^{\circ}$. The methoxy groups at C 3 and C 4 are almost coplanar with the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring, with $\mathrm{C} 17-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$ and $\mathrm{C} 18-\mathrm{O} 3-\mathrm{C} 4-$ C5 torsion angles of 8.0 (2) and $-2.3(2)^{\circ}$, respectively.

An intramolecular $\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1$ hydrogen bond generates an $S(5)$ ring motif (Bernstein et al., 1995). C5$\mathrm{H} 5 A \cdots \mathrm{O} 4^{\mathrm{i}}$ and $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 4^{\mathrm{i}}$ (Table 1) interactions form a pair of bifurcated acceptor bonds, generating a ring of graphset motif $R_{2}^{1}(5)$ (Bernstein et al., 1995). C15-H15A…O3 ${ }^{\mathrm{ii}}$ (Table 1) interactions further stabilize the crystal packing.

Experimental

Chalcone derivative (I) was prepared by adding NaOH ($10 \mathrm{ml}, 30 \%$) to $2,4,5$-trimethoxybenzaldehyde $(0.01 \mathrm{~mol})$ and 4 -chloroacetophenone (0.01 mol) in ethyl alcohol (60 ml). After stirring the reac-

Received 14 June 2006 Accepted 17 June 2006
tion mixture for 2 h , the contents of the flask were poured into icecold water $(250 \mathrm{ml})$, and left to stand for 12 h . The resulting crude solid was collected by filtration, dried and purified by repeated recrystallization from acetone. The purity of the compound was checked by thin-layer chromatography. Crystals suitable for singlecrystal X-ray diffraction were grown by slow evaporation of an acetone solution at room temperature over a period of 9 d .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}$
$M_{r}=367.21$
Triclinic, $P \overline{1}$
$a=8.4985$ (1) A
$b=9.3394$ (2) \AA
$c=11.4856(2) \AA$
$\alpha=83.199(1)^{\circ}$
$\beta=74.701(1)^{\circ}$
$\gamma=82.419(1)^{\circ}$

Data collection

Brucker SMART APEX2 CCD
area-detector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.816, T_{\text {max }}=0.895$
$V=868.29(3) \AA^{3}$
$Z=2$
$D_{x}=1.405 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Block, yellow
$0.41 \times 0.38 \times 0.29 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.178$
$S=1.03$
7577 reflections
221 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0838 P)^{2}\right. \\
& +0.1675 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.65 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.045 \text { (5) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5A \cdots O4 4^{i}	0.93	2.51	$3.420(2)$	165
C7-H7A \cdots O1	0.93	2.38	$2.727(2)$	102
C8-H8A $\cdots 4^{\mathrm{i}}$	0.93	2.48	$3.410(2)$	174
C15-H15A $\cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.46	$3.295(2)$	149

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2
The crystal packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.96 \AA$. The $U_{\text {iso }}$ values set equal to $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\mathrm{eq}}$ for the remaining H atoms.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No.304/PFIZIK/653003/ A118. PSP and SMD are grateful to DRDO, the Government of India for the financial assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. \& Nakayama, M. (1988). Jpn. J. Appl. Phys. 27, L429-L430.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896-o898.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o890-o892.
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o2399-o2400.
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. \& Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 314, 135-140.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

